A penalized spline approach to functional mixed effects model analysis.

نویسندگان

  • Huaihou Chen
  • Yuanjia Wang
چکیده

In this article, we propose penalized spline (P-spline)-based methods for functional mixed effects models with varying coefficients. We decompose longitudinal outcomes as a sum of several terms: a population mean function, covariates with time-varying coefficients, functional subject-specific random effects, and residual measurement error processes. Using P-splines, we propose nonparametric estimation of the population mean function, varying coefficient, random subject-specific curves, and the associated covariance function that represents between-subject variation and the variance function of the residual measurement errors which represents within-subject variation. Proposed methods offer flexible estimation of both the population- and subject-level curves. In addition, decomposing variability of the outcomes as a between- and within-subject source is useful in identifying the dominant variance component therefore optimally model a covariance function. We use a likelihood-based method to select multiple smoothing parameters. Furthermore, we study the asymptotics of the baseline P-spline estimator with longitudinal data. We conduct simulation studies to investigate performance of the proposed methods. The benefit of the between- and within-subject covariance decomposition is illustrated through an analysis of Berkeley growth data, where we identified clearly distinct patterns of the between- and within-subject covariance functions of children's heights. We also apply the proposed methods to estimate the effect of antihypertensive treatment from the Framingham Heart Study data.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Simultaneous Confidence Bands for Penalized Spline Estimators

In this paper we construct simultaneous confidence bands for a smooth curve using penalized spline estimators. We consider three types of estimation methods: (i) as a standard (fixed effect) nonparametric model, (ii) using the mixed model framework with the spline coefficients as random effects and (iii) a Bayesian approach. The volume-of-tube formula is applied for the first two methods and co...

متن کامل

A note on bimodality in the log-likelihood function for penalized spline mixed models

For a smoothing spline or general penalized spline model, the smoothing parameter can be estimated using residual maximum likelihood (REML) methods by expressing the spline in the form of a mixed model. The possibility of bimodality in the profile log-likelihood function for the smoothing parameter of these penalized spline mixed models is demonstrated. A canonical transformation into independe...

متن کامل

Use of Two Smoothing Parameters in Penalized Spline Estimator for Bi-variate Predictor Non-parametric Regression Model

Penalized spline criteria involve the function of goodness of fit and penalty, which in the penalty function contains smoothing parameters. It serves to control the smoothness of the curve that works simultaneously with point knots and spline degree. The regression function with two predictors in the non-parametric model will have two different non-parametric regression functions. Therefore, we...

متن کامل

Using single-index ODEs to study dynamic gene regulatory network

With the development of biotechnology, high-throughput studies on protein-protein, protein-gene, and gene-gene interactions become possible and attract remarkable attention. To explore the interactions in dynamic gene regulatory networks, we propose a single-index ordinary differential equation (ODE) model and develop a variable selection procedure. We employ the smoothly clipped absolute devia...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biometrics

دوره 67 3  شماره 

صفحات  -

تاریخ انتشار 2011